Narragansett Bay Commission

Rumford

East Providence

CSO Control Facilities Phase III Reevaluation Alternative Plans Workshop 27 April 2015

Edgewood Lake

Edgewood Yacht Club 🔘

PARI

BUILDING A BETTER WORLD CORP.

Clean Water Act - 1972

- What is required by the Clean Water Act for Combined Sewer Overflow (CSO) control?
- Need to meet Water Quality standards all the time
- Cost prohibitive to meet standards for <u>all storms</u>
- EPA Approach
 - Spend what you can afford
 - Affordability based on 2% MHI
 - Reevaluate every 5 years
- Focus on Alternatives 1, 2 and 3
 - Board indicated #4 should not be further considered
 - However, #4 is evaluated in the water quality impact analysis

Why Don't We Meet Water Quality Standards in Wet Weather?

- Primary pollutant of concern for CSO's is Bacteria
- Sources of bacterial pollution (wet weather)
 - CSO's
 - Stormwater (storm sewers or overland)
 - Wastewater Treatment Facilities (WWTF's)

What Can be Done to Control CSO's to Meet Water Quality Standards?

- Green Infrastructure prevent storm flow from getting to the combined sewer or storm sewer
- Sewer Separation Install new storm drains to collect stormwater
- Storage and Treatment Tunnels or Holding Tanks
- Treatment Screening and disinfection

Green Infrastructure

Bioretention basins capture pollutants from impervious surfaces.

Bioretention Swale

Grand Broadway-No GSI

Grand Broadway-Pervious Pavement with Rain Garden Bump-outs

Green Infrastructure Considerations

- Using all suitable GSI locations identified by MWH can only achieve 36% reduction in CSO volume
- Capital cost for 36% reduction is \$540M
- Who would maintain the Facilities?
- Maintenance costs are not well defined

Alternative 1: Baseline CDRA

Alternative 2: Modified & Phased Baseline

High & Cross Streets Interceptor

Middle Street Interceptor

Hybrid GSI/Sewer Separation

GSI in Targeted Areas

220 Stub Tunnel or Morley Field Tank

B

Pawtucket Tunnel

2045

2040

D

West River Interceptor

A020

Sewer Separation

0

Bucklin Point WWTF

Alternative 3: Modified, Extended & Augmented Baseline Hybrid GSt/Sewer Separation

220 Disinfection

Middle Street Interceptor

> GSI in Targeted Areas

Pawtucket Tunnel

2(:45

218 – BPWWTF Interceptor Bucklin Point WWTF

220 Stub Tunnel

West River

Sewer Separation

C 2030

D5

(= 0

Alternatives 1-3: Timeline & Cost

3	Concept Review	BPWWTF Wet Weather Int., GSI	220 S&D, G	SI	Tunne	I, GSI	Hi	gh an Str nterc Gi	d Cross eet eptor, SI	Wes Inte Sep:	st Rive crcepto 035 aration GSI	r r I, ⁷	220 Funn) Stu iel, G	b SSI		\$924,464,066
2	Concept Review	Tunnel,	GSI	Hig In	th and Cross Street Interceptor, GSI	220 Stub Tunnel, GS	I	Wes Inte Sepa	t River rceptor 035 tration, GSI								\$815,608,351
1	Concept Review	Tunnel, High a Interceptor, 220 039, 056 Separ	nd Cross Stree Interceptor, 0. ation (No GSI	et 35,)													\$740,730,396
	2015	2016 2017 2018 2019 2020	2021 2022 2023 2024	2025	2026 2027 2028 2029	2030 2031 2032 2033	2034	2035	2036 2037 2038	2039	2040	2042	2044	2045	2046	2047	

Year

What Water Quality Improvements can we expect with Phase III?

MODEL GRID

Source Loads

Source Loads for 3 month storm – Post Phase I

Source	Bacterial Load	% of Total Bacterial Load		
	Concentration			
CSO	240,000	89		
WWTF's	4-40	0		
Tributaries	200-2,000	3.9		
Storm Sewers	10,000	6.6		

Estuary Water Quality Standard

Fecal Coliform concentrations 0.5 day after start of 3-month storm

Fecal Coliform concentrations 1 day after start of 3-month storm

Fecal Coliform concentrations 2 days after start of 3-month storm

Fecal Coliform concentrations 4 days after start of 3-month storm

Tunnel Only

(Alt 1&2: 2023, Alt 3: 2032)

Phase II

(2015)

Fecal Coliform concentrations 6 days after start of 3-month storm

SA 0-> 14 SB

(FC/100 mL)

> 100000

Fecal Coliform concentrations 8 days after start of 3-month storm

SA 0-> 14 SB 14-> 49

Fecal Coliform concentrations 10 days after start of 3-month storm

Estuary Water Quality Standard

Expected Water Quality Improvements by Alternative – 3 month storm

	Acre Days not Meeting Standard							
Alternative	Shellf	ishing	Swimming					
	Area B	Area A	PRSB	PRSBI	SRSBI			
Post Phase II	1	10,700	8,920	9,200	1,400			
1,2,3 (Tunnel Only)	0	5,640	5,440	7,550	1,260			
1,2,3 (Full Phase III)	0	1,790	1,710	5,500	1,180			
Alternative 4	0	7,660	6,960	8,460	1,300			

Conclusions about Water Quality Improvements

- Water Quality standards are not met for the design storm for any of the alternatives
- Completed Alternatives 2 and 3 provide much better water quality results than Alternative 4
- Completed Alternative 4 is less effective than tunnel only under Alternatives 2 and 3

What's Affordable?

EPA Affordability Criteria Phase I Evaluation

Financial Impact	Cost per Household
Low	Less than 1.0 percent of MHI
Mid-Range	1.0 - 2.0 percent of MHI
High	Greater than 2.0 percent of MHI

Baseline NBC Capital Plan

Total	\$7/ 961 /07	\$10 194 726	\$10,638,689	\$10 202 175	\$7/0 730 396	\$015 817 603
2026	2,714,043	678,511	2,714,043	0	0	6,106,596
2025	2,632,437	658,109	2,632,437	0	49,136,897	55,059,880
2024	2,553,285	638,321	2,553,285	0	49,717,079	55,461,970
2023	2,476,513	619,128	2,476,513	0	90,729,431	96,301,586
2022	2,402,050	600,512	2,402,050	0	158,255,266	163,659,878
2021	2,329,825	582,456	2,329,825	0	158,255,266	163,497,372
2020	2,259,772	564,943	2,259,772	0	97,340,231	102,424,719
2019	2,191,826	722,207	5,167,229	0	91,831,056	99,912,317
2018	2,125,922	621,300	5,325,966	0	2,841,573	10,914,761
2017	5,056,024	856,761	4,532,276	4,773,530	21,311,798	36,530,389
2016	25,743,500	1,686,900	5,226,363	8,924,731	10,655,899	52,237,393
2015	\$22,476,211	\$1,965,578	\$3,018,930	\$35,594,214	\$10,655,899	\$73,710,832

Determination of Cost Per Household for Baseline Case

Row	Item	Unit		Value		
Curren	t Costs					
100	Annual O&M Costs	(\$s)	\$	40,955,964		
101	Annual Capital and Debt Service	(\$s)		45,461,965		
102	Subtotal	(\$s)	\$	86,417,929		
Projected Costs						
103	Estimated Annual O&M Costs	(\$s)	\$	489,850		
104	Estimated Annual Capital and Debt Service	(\$s)		66,675,714		
105	Subtotal	(\$s)	\$	67,165,564		
106	Total Current and Projected Costs	(\$s)	\$	153,583,493		
107	Residential share of total costs	(\$s)	\$	93,753,926		
108	Total number of Households in Service Area			118,683		
109	Cost Per Household	(\$s)	\$	789.95		

Determination of EPA Phase I Evaluation Residential Indicator

NBC Service Area MHI (2015)*	\$47,165
Cost Per Household	\$790
CPH/MHI	1.67%

*All Communities

EPA Affordability Criteria Phase II Evaluation

Indicator	Strong	Mid-Range	Weak
Bond Rating	AAA-A (S&P) or Aaa-A (MIS)	BBB (S&P) or Baa (MIS)	BB-D (S&P) or Ba-C (MIS)
Net Debt/Property Value	Below 2%	2% - 5%	Above 5%
Unemployment Rate	>1% below National Ave.	±1% of National Ave.	>1% above National Ave.
Median Household Income	>25% above adj. Nat'l MHI	±25% of adj. Nat'l MHI	>25% below adj. Nat'l MHI
Prop. Tax/Property Value	Below 2%	2% - 4%	Above 4%
Prop. Tax Collection Rate	Above 98%	94% - 98%	Below 94%

Determination of EPA Phase II Evaluation Financial Capability Indicators

Row	Item	Value	Score
901	Bond rating	AA-	3
902	Net debt percent of property value	1.4%	3
903	Unemployment rate compared with national average	+ 1.9%	1
904	Median household income compared with national average	14.5%	2
905	Property tax revenue percent of property value	2.67%	2
906	Property tax revenue collection rate	96.25%	2
907	Permittee indicator score		2.17

EPA Financial Capability Matrix Phase I and II Evaluations

	Residential Indicator						
Capability Indicators	(Cost pe	(Cost per Household as a percentage of MHI)					
Score (Socioeconomic, Debt & Financial Indicators	Low (below 1.0%	Mid-Range (between 1.0 and 2.0%)	High (greater than 2.0%)				
Weak (Below 1.5)	Medium Burden	High Burden	High Burden				
Mid-Range (Between 1.5 and 2.5)	Low Burden	Medium Burden	High Burden				
Strong (Above 2.5)	Low Burden	Low Burden	Medium Burden				

MHI of Entire Service Area
1.67% → \$790
2.00% → \$943

Projected Average Bills

Conclusions of EPA Affordability Analysis

- Cost Per Household = \$790 = 1.67%MHI = Medium Burden = Affordable
- Cost Per Household \geq \$943 = 2% MHI = Unaffordable
- All 4 Alternatives are affordable considering the entire service area
- More detailed analysis warranted for Providence, Pawtucket and Central Falls

2% of MHI by Community

Affordable Rates for Providence, Pawtucket and Central Falls

	2% MHI	Local Costs*	NBC Rate			
Providence	\$740	\$159	\$581			
Pawtucket	\$800	\$174	\$626			
Central Falls	<u>\$560</u>	<u>\$98</u>	<u>\$462</u>			
Weighted Average	\$742		\$580			
* For Sewer Maintenance and stormwater						

Number of Households With Rate >2% MHI – Baseline Case

Year	Rate	# of HH > 2% MHI	% of HH > 2%
2015	\$466	45,000	38%
2020	\$568	50,000	42%
2023	\$761	62,000	52%
2026	\$812	64,000	54%

Notes: Total Number of Households in Service Area = 118,526

What is an Affordable Rate for NBC to Charge

<u>Criteria</u>	<u>Rate</u>
Central Falls 2% MHI minus Local Cost	\$462
Providence, Pawtucket, CF 2% MHI minus Local Cost	\$580
Providence, Pawtucket, CF 2% MHI (no local cost)	\$742
2% MHI entire service area (no local cost)	\$943
Projected NBC Rates with Phase III Assuming Baseline Case	
2015	\$466

2015	\$400
2020	\$568
2023	\$761
2026	\$812

Projected Average Bills

PFM Rate Modeling

- Consistent with NBC modeling methods for rate impact assessment
- Present values of the capital and O&M
 - Includes NBC's base capital plan
 - Layers on projected costs for the CSO Phase III Facilities
- Generates annual revenue requirements and the resulting cumulative rate impacts

- Differences between PFM and MWH Models:
 - First year of PFM model is 2016 (MWH is 2015)
 - CSO Phase III Capital Costs inflated at 3%/year through the first year of the implementation of that phase (MWH 2018)
 - Debt service reserves funded through bond proceeds (MWH cash)
 - No O&M reserve fund (MWH 90 day O&M reserve)
 - Prior year surplus revenues not used until the year after generated (MWH same year as revenue generated)
 - Level debt (MWH deferred principal)

- The baseline cost of Alternative 1 is lowest, followed by Alternative 2, and then Alternative 3 as the most expensive
- Cost is defined as the present value (3% discount rate) of all incremental O&M costs, plus the present value of all debt service payments issued by bonds in years 2016 and after

Cap Ex		Cost	
Alternative	PV DS	PV O&M	Total Cost
1	\$ 702,980,358	\$ 8,508,178	\$ 711,488,536
2	720,674,027	16,343,082	737,017,109
3	\$ 780,628,373	\$ 37,426,777	\$ 818,055,150

Cumulative Revenue Increases

- Alternative 1: 169.3%
- Alternative 2: 167.2%
- Alternative 3: 182.6% 190.0%

Cumulative Rate Increases Alternatives 1,2 and 3 no Community Costs

PFM Analysis shows that Alternative 2 has the least impact on rates

Projected Rates

Year	Annual Rate		
2015	\$	459	
2020		605	
2025		715	
2030		744	
2035		767	
2040	\$	767	

2014 RI Annual Residential User Charges

Newport \$843 Middletown \$737 Jamestown \$680 **East Greenwich** \$621 Warwick \$471 East Providence \$470 Average \$465 **NBC Service Area** \$459 Barrington \$440 \$424 Cranston Burrillville \$417 Woonsocket \$401 Narragansett \$400 North Smithfield \$393 Smithfield \$330 Westerly \$301 West Warwick \$284 South Kingstown \$229 \$-\$100 \$200 \$300 \$400 \$500 \$600 \$700 \$800 \$900

2014 RI Annual Residential User Charge Survey (Based on 150 gpd)

2014 Annual Residential Sewer Charges for Major U.S. Cities vs. NBC

2014 Annual Residential Sewer Charges for Major U.S. Cities (Based on usage of 120 HCF)

Next Steps

- Board Selects Alternative
- Complete Reevaluation Report
- Submit to RIDEM
- DEM Review
- Negotiate Revision to Consent Agreement and Schedule
- Sign Revised Consent Agreement

April-May 2015 June 2015 July 2015 July 2015-Nov 2015 Nov-Dec 2015 Jan 2016

Phase III Schedule for Implementation

- Preliminary Design
- RIDEM Review
- Final Design
- RIDEM Review
- Bid Award
- Construction Phase III-A

January 2016 - June 2017 July 2017 - December 2017 January 2018 - June 2019 July 2019 - December 2019 January 2020 - June 2020 July 2020 - July 2025

Narragansett Bay Sewer Economic Impact Analysis

Prepared for Narragansett Bay Commission – February 18, 2015

ECONOMIC AND REAL ESTATE ANALYSIS FOR SUSTAINABLE LAND USE OUTCOMES[™]

Economic Impact Analysis

The economic impacts of the various Combined Sewer Overflow Program's Phase 3 alternatives are highlighted below. In order to adequately detail and evaluate the economic impacts of the Phase 3 alternatives, 4ward Planning calculated the direct, indirect, and induced economic impacts associated with each scenario, over the course of the period of investment. According to our analysis, the four alternatives range from over 2,200 jobs (full- and part-time) by Alternative 4, to over 4,300 jobs created by Alternative 2. Similarly, Alternative 2 represents the greatest economic output and state and local taxes impacts relative to the other alternatives. As highlighted in the following section, Alternative 1 offers the greatest annualized return/increase on/of employment, economic output, and state and local taxes relative to the other alternatives. Consistent with its lower amount of total investment, Alternative 4 has the smallest economic impact in terms of employment, economic output, and state and local taxes.

Summary of Total Economic Impacts of Phase 3 Alternatives								
Narragansett Bay Commission Service Area								
	Time Period	Total Investment (nominal dollars)	Employment	Output (millions, current dollars)	Output (millions, inflated-adjusted dollars)*	State and Local Taxes (millions, current dollars)	State and Local Taxes (millions, inflation-adjusted dollars)*	
Alternative 1	2015-2025	\$740,730,396	4,083	\$638.4	\$788.2	\$18.9	\$22.8	
Alternative 2	2016-2038	\$815,608,351	4,317	\$675.1	\$911.1	\$19.9	\$26.5	
Alternative 3	2016-2047	\$924,464,066	4,191	\$655.2	\$884.3	\$19.4	\$25.7	
Alternative 4	2016-2038	\$451,599,999	2,263	\$353.8	\$477.5	\$10.5	\$13.9	

* Calculated by the year in which the investment period ends

General Input-Output Impact Modeling - Example

Direct impacts are the result of a change in final demand.

For example, if \$10 million is invested in building construction, increasing demand for buildings by \$10 million...

Indirect effects result from changes in demand for factors of production.

...the \$10 million increase in the construction industry sector revenue causes a \$4 million increase in purchase orders to related industries, like lumber and heavy machinery.

Induced effects result from changes in household spending.

Building construction, lumber production, and heavy machinery manufacturing pay their workers wages to deliver various products, enabling workers to spend an additional \$100,000 within the regional economy.

Total effects are the combination of direct, indirect, and induced effects.

The total effect of a \$10 million increase in building construction demand, then, is equal to \$14.1 million (\$10 million + \$4 million + \$100,000).