Nutrient Standing Stock Dynamics With Onset of Tertiary Treatment

Jason Krumholz
Candace Oviatt

NBC Upper Bay Symposium 6/16/2011

1998 & 2006-2009 Stations

Oviatt 1980 Stations

What is the Actual Load Reduction?

- •2004-2009 data based on loading data and previous mass balance (Nixon et al. 2008)
- •2011-2015 data based on loading estimates (Liberti, pers. Comm.) and monthly design flows (a conservative estimate)
- Reduction is almost entirely DIN

- •DIN/DIP ratio <16:1 is traditionally viewed as a nitrogen limited system.
- •On an annual average basis,
 Narragansett Bay remains
 nitrogen limited throughout,
 though this limitation is more
 severe in the mid and lower bay.
- On shorter time scales, some areas of the Upper Bay do show evidence of P limitation, which may become even more important as N inputs continue to drop.

Lining Up the Stations with Volume Boxes from GEM Box Model (Kremer et al. 2010)

- Used Average of 9,14,8 for Box 5
- •Averaged 5 and 6 for Box 12
- •Buoy data used for Greenwich Bay boxes (6 and 7)
- •For 1979-80 data West passage data were used for stations 4,5,6. 2006-2009 data were used for Greenwich Bay and MHB
- Multiplying by volume gives us the total 'standing stock' in the bay...
- •Future Work: Bottom data may significantly improve resolution

Annual DIN breakdown 1979-1980

The Short Short Version

- We do see a reduction in DIN roughly proportional to the reduction we might expect.
- We do not see a reduction in TN. However, we may lack resolution to detect the ≈7% reduction which has occurred.
- The observed reduction does not appear to be greater in the summer.
- Phosphorus reduction appears to be much larger than would be expected from wastewater improvements alone.

Implications for Management

- Short and long term temporal variability in standing stocks relative to WWTF inputs is an important consideration.
- While there is a reduction in DIN, there is no apparent reduction in TN. DIP and TP show a similar pattern.
- Standing stocks of total nutrients are much less variable than inorganic nutrients.
- While DIN in the upper bay has not changed measurably, stocks in the lower bay have been significantly reduced, a possible indication that the lower bay is more nutrient limited.

Acknowledgements

Rossie Ennis Leslie Smith Scott Nixon

Angelo Liberti Ashley Bertrand

Catherine Walker Christine Comeau

Danielle Dionne Brooke Longval

Chris Melrose & NOAA/DEM Shuttle Team

Funding Support: NOAA CHRP - Libby Jewett, Project Officer

References

Oviatt, C. (1980). Some aspects of water quality in and pollution sources to the Providence River. In R. Pastore, Report for Region 1 EPA. September 1979-September 1980. Boston, MA: United States Environmental Protection Agency.

Oviatt, C., Keller, A., & Reed, L. (2002) Annual primary production in Narragansett Bay with no bay-wide winter-spring phytoplankton bloom. *Estuarine Coastal and Shelf Science*, 54, 1013-1026.

Nixon, S.W., Buckley, B.A., Granger, S.L., Harris, L.A., Oczkowski, A.J., Fulweiler, R.W., & Cole, L.W. (2008). Nitrogen and Phosphorus Inputs to Narragansett Bay: Past, Present, and Future. In B. Costa-Pierce, & A. Desbonnet, *Science for Ecosystem-based Management (pp. 101-175)*. New York: Springer.

Kremer, J. N., J. M. P. Vaudrey, D. S. Ullman, D. L. Bergondo, N. LaSota, C. Kincaid, D. L. Codiga, and M. J. Brush. 2010. Simulating property exchange in estuarine ecosystem models at ecologically appropriate scales. Ecological Modelling **221:1080-1088.**