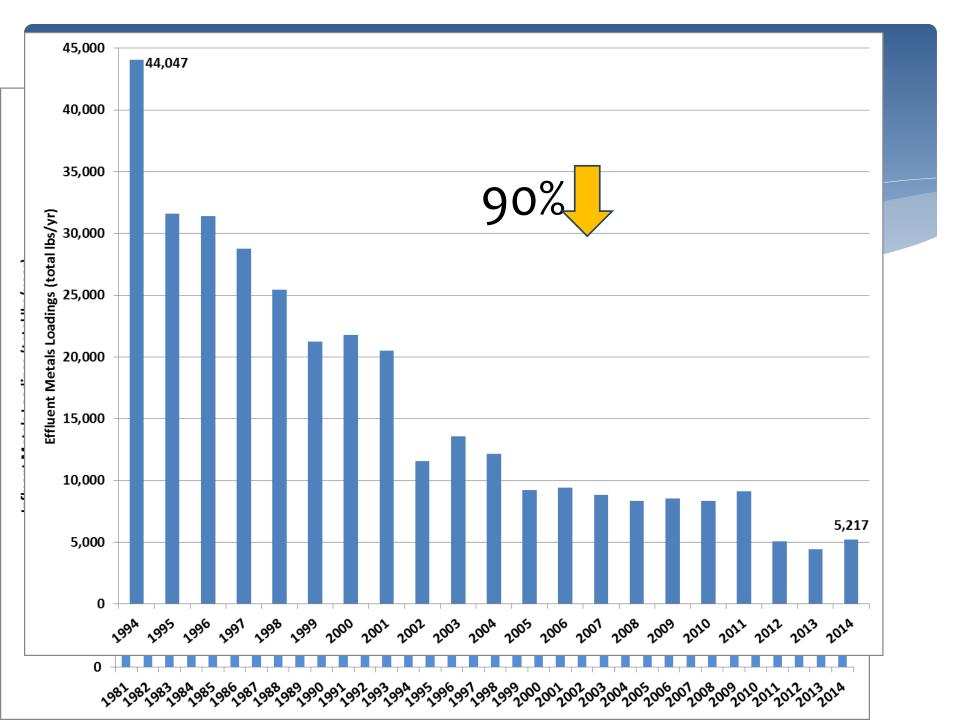

Thirty Years Later: Evaluation of Heavy Metals
Contamination in Bivalves after Successful Load
Reduction in Narragansett Bay

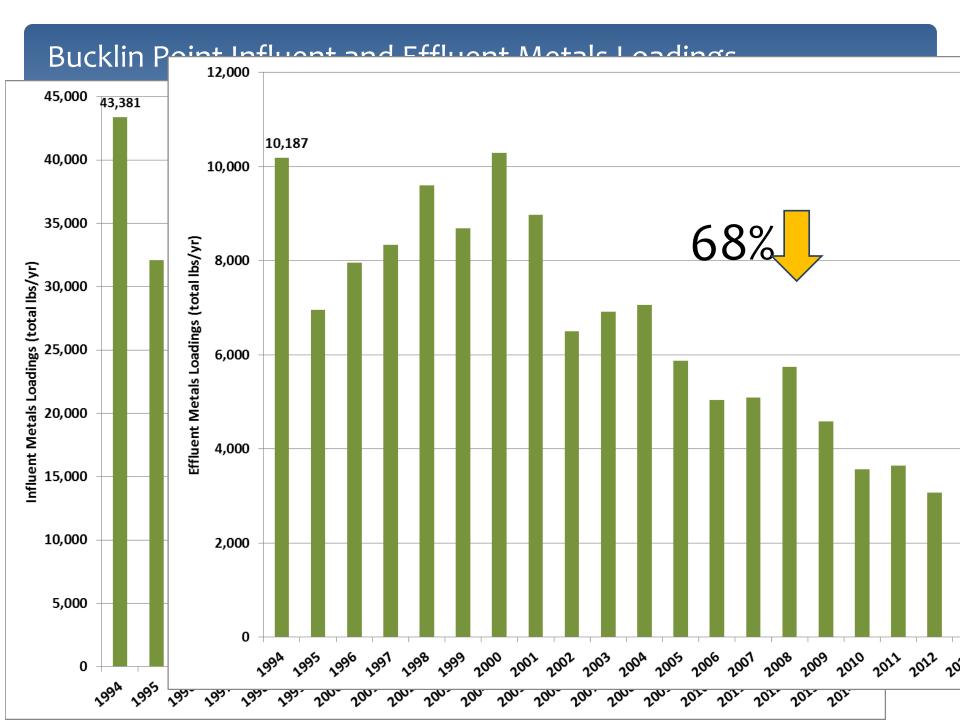
Christine Comeau, Environmental Scientist Narragansett Bay Commission

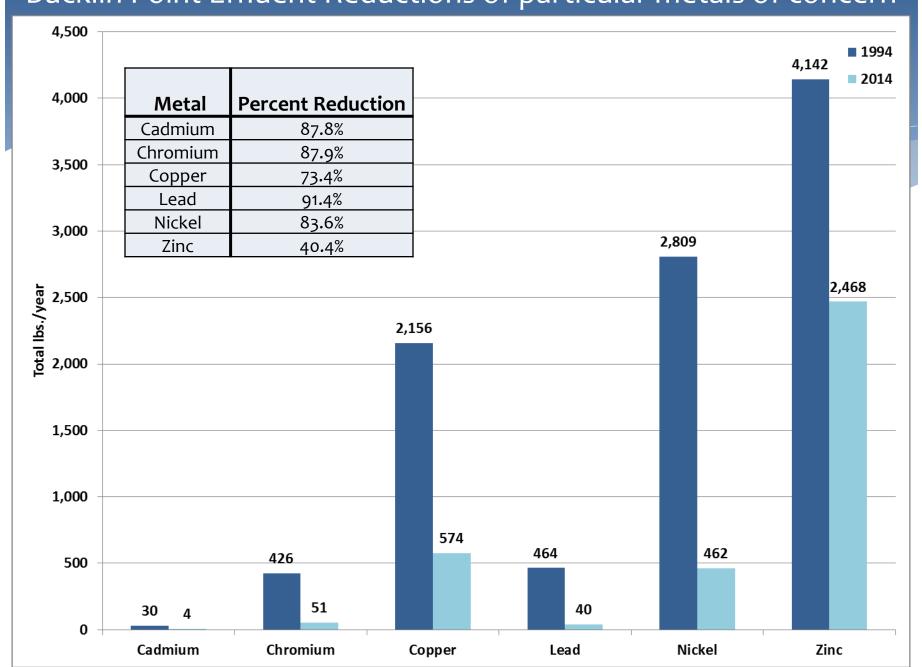
NBC Pretreatment Program

- * NBC Pretreatment Program: ______ permits, monitors, regulates industries
 - Protects NBC WWTFs and Narragansett Bay from harmful contaminants
 - * ~50 Metal finishers, electroplaters
 - * Majority of toxic metal/cyanide loadings to NBC WWTFs
 - * Steady decline in this type of industry over last 20 years
- * WWTFs –not designed to remove heavy metals, cyanide and other toxic chemicals.
 - Settle out in wastewater, sludge, remainder goes out to receiving waters



History of metal contamination in Narragansett Bay


- * Highly industrialized watershed since late 1700's
 - * Industrial Revolution, machinery and jewelry manufacturing, plating
- * Sediments, surface waters contaminated with variety of anthropogenic metals from many sources.
 - * Metals of concern: arsenic, **cadmium, chromium, copper**, iron, **lead**, manganese, mercury, **nickel**, selenium, silver, and **zinc**
- * Environmental regulations, local limits, successful pretreatment programs have reduced metal inputs to Narragansett Bay

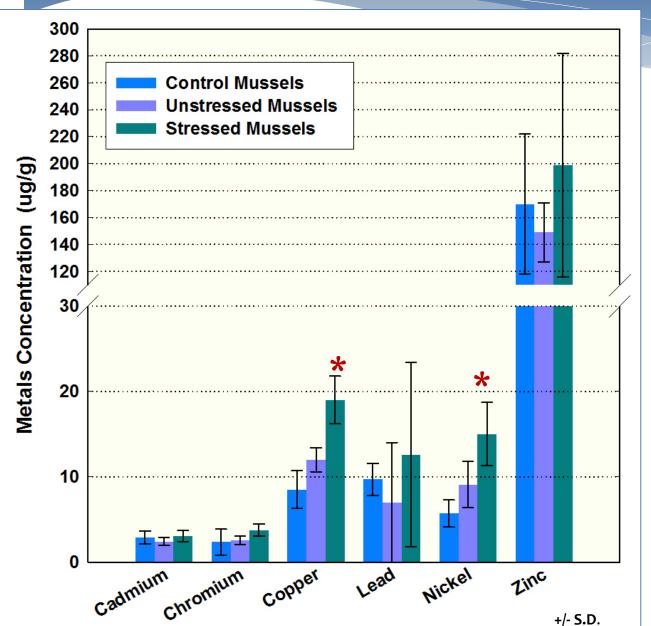


Field's Point Effluent Reductions of particular metals of concern 20,000 **1994** 18,134 2014 18,000 **Percent Reduction** Metal Cadmium 95.6% 16,000 Chromium 89.6% Copper 96.3% Lead 95.4% 14,000 13,324 Nickel 89.8% 78.8% Zinc 12,000 Total lbs./year 10,000 9,132 8,000 6,000 4,000 2,828 1,846 2,000 1,372 1,266 334 135 132 64 0 Cadmium Chromium Nickel Zinc Lead Copper

Bucklin Point Effluent Reductions of particular metals of concern

Purpose of Study

- Major reduction of metals into Narragansett Bay over past 30+ years
- * Receiving waters removed from EPA's 303d list for impaired waters for metals in 2004
 - * 2000, 2001 data
- * Could we biologically see these reductions in a key shellfish species?
 - Replication of EPA study
 - * Good baseline
 - * Metals data prior to NBC Pretreatment Program


Original study background, Phelps & Galloway, 1979

- * 1976 EPA Study, published in 1979
- * Blue Mussel, Mytilus edulis, effective indicator of metals pollution?
- * Collected and relocated mussels from non-polluted to a metals impacted location in Narragansett Bay
- * Reference: Phelps, D.K. and Galloway, W.B. 1979. The use of introduced species (Mytilus edulis) as a biological indicator of trace metal contamination in an estuary. Advances in Marine Science, Proceedings of a Symposium. Jacoff, F.S., editor. EPA-600/9-79-035

Phelps & Galloway, EPA 1979

- * Collected mussels from Popasquash Pt.
- * Deployed at 2 locations
 - * Stressed Conimicut Pt.
 - * Unstressed No. of Jamestown.
 - * Lab-held mussels for control
- * Compared lab held mussels, unstressed mussels and stressed mussels after 4 wks.
- * Summary: M. edulis effective indicator of metal pollution along gradient of anthropogenic stress

Results – Phelps & Galloway, 1979

- No significant difference between lab held and unstressed
- Cd: no significant difference
- Cr: no significant difference
- Cu Stressed mussels significantly higher
- Pb –few mussels above D.L. sample size too small
- Ni Stressed mussels significantly higher than labheld
- Zn Large variability meaningful comparison not possible

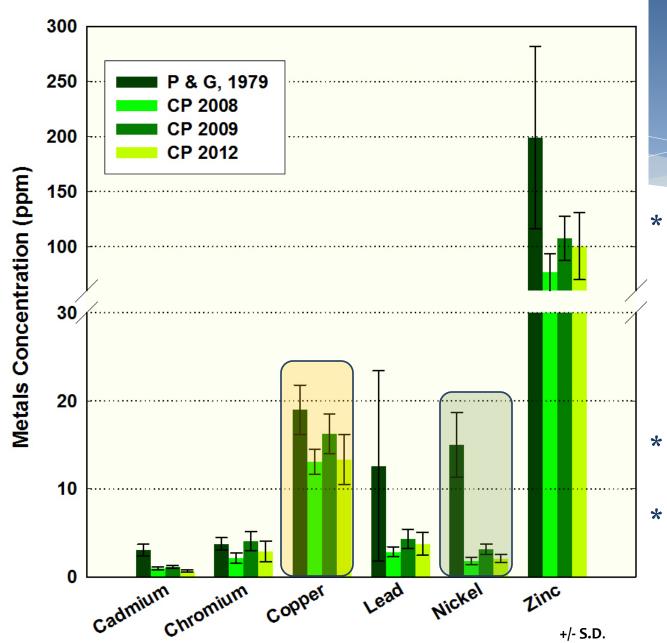
Heavy Metals Contamination in Blue Mussels, Mytilus edulis

- * Replicated study design from 1976 Phelps and Galloway experiments
- * Replicated: Equipment design, deployment location, metals tested
- * Differences: original mussel collection location, control design, analysis equipment
- * Tested for: cadmium, chromium, copper, lead, nickel, and zinc
 - * Compared results to original study results

NBC Study Design

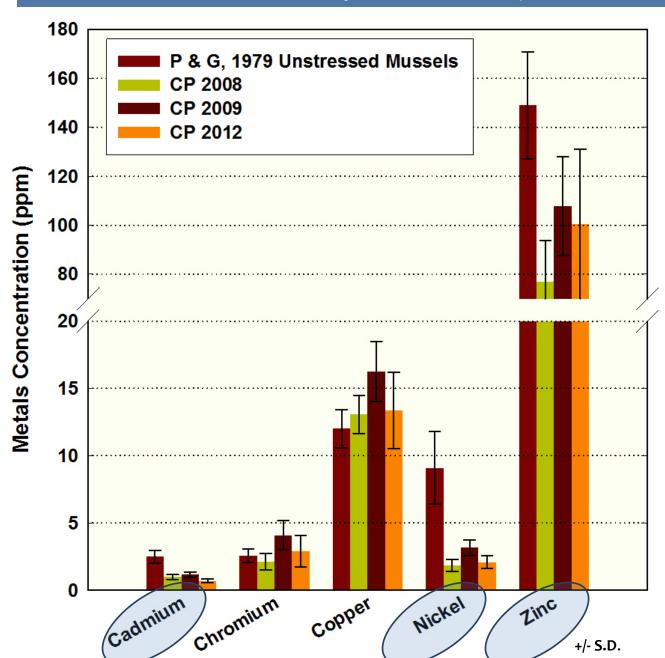
- * Mussels collected from Ft. Getty Jamestown, RI during fall season of 2008, 2009, 2012
 - * Close proximity to established long-term NOAA Mussel Watch site for comparison
- * Some mussels immediately put on ice after collection for analysis as a control
- * Mussels deployed at two experimental sites day after collection:
 - * Conimicut Point (CP) and Sabin Point (SP)
 - * Two separate baskets each containing 15 22 mussels
- * 2008 Mussels were deployed at CP and SP for 3 week & 4 week periods
 - * 1 basket collected at wk. 3, other basket at wk. 4
- * 2009 & 2012 Mussels deployed for 4 weeks at same locations
 - * Both baskets collected at 4 weeks

NBC Lab Analysis


- * Mussels put on ice immediately after collection and frozen.
- * Thawed just before analysis
- * De-shelled and mussel tissue was weighed.
- * Digested on an Environmental Express hotblock using Nitric and Hydrochloric acids.
- * After digestion was complete mussel tissue was brought up to a 50 mL volume with DI water.
- * Analyzed on a Perkin Elmer ICP Optical Emission Spectrometer for the desired metals.

Initial data review and comparison of NBC results to Phelps & Galloway

- * Outliers (IQR)
- * 2008 3 weeks vs. 4 weeks; if no difference, weeks were combined.
 - * Difference used wk 4. (n = 31 or 15)
- * 2009 (n = 27), 2012 (n=42)
- * Conimicut Point was compared to stressed and unstressed concentration data.
 - * ANOVA statistical test


* *Used standard deviation as was reported 1979 paper

Conimicut Point vs. Phelps & Galloway Stressed Mussels

- Concentrations at Conimicut Point all three years were significantly lower
 - * except Cr 2009 no significant difference.
- * Largest decrease Ni
 - * (avg 84%)
- * Smallest* decrease Cu
 - * (avg 25%)

Conimicut Point vs. Phelps & Galloway Unstressed Mussels

- Cd, Ni, Zn:
 - * all years significantly lower
 - Cr and Cu:
 - * no significant difference in 2008, 2012
 - CP was significantly higher in 2009 for both

^{*} Lead not analyzed; n=1 for 1976 data

Results – NBC Experimental Data (Conimicut Pt.) vs. Phelps & Galloway, 1979

- * All 3 NBC study years were below concentrations from P&G 1976 data
- * Stressed: 5 of 6 metals significantly lower than [1976]concentrations: Cd, Cu, Pb, Ni, Zn
 - * Cr in 2009 no significant difference
 - * (2008 & 2012 significantly lower)
 - * Cu lowest % reduction
 - * Ni highest % reduction
 - * Cr least difference between two study periods
- * Unstressed: significantly lower for Cd, Ni, Zn;
 - * Cr and Cu no difference in 2008/2012
 - * 2009 was significantly higher.

Take-away Points

- * Since inception of NBC Pretreatment Program, huge reduction in metals loadings to and from NBC WWTFs
- * Conimicut Point mussel concentration data significantly lower in each NBC study year than in 1976.
- * Influent Cu, Ni, Cr decreased by ≥95% since 1981 at FP
 - * Cu showed the lowest % reduction (25%)
 - * Ni showed the highest % reduction (84%)
 - Cr showed least magnitude of change

* Nickel:

- Decrease in use of nickel in industry
- * Nickel mostly dissolved low % removal in WWTFs

* Copper:

- * Copper still found in more sources (i.e. drinking water)
- * Copper Particulate high inf/eff % removal changes in water column concentrations not as drastic
- * Non-industrial background sources copper and zinc concentrations high

* Chromium:

- * No significant difference in 2009 from 1976 study
- * Cr- has high inf/eff % removal at WTTFs particulate
- Sources of chromium drinking water, industry
- * Persistent in Sediments

Efficacy of Pretreatment Program

- * Able to see this successful reduction of metals in a native aquatic species
- * Concentrations for all metals for all 3 NBC study years were significantly lower 1976
- * Testament to Pretreatment Programs and local limits development

Acknowledgments:

- NBC EMDA, PP&R
 - EMDA Monitoring Staff
 - Tom Uva, John Motta, Jim Kelly, Pamela Reitsma, Eliza Moore
- NBC Laboratory
 - Walter Palm, Kim Sandbach
- Walt Galloway, EPA

Contact Info: Christine Comeau ccomeau@narrabay.com (401) 461-8848

Thank you!

Questions?

